Vapor Pressure of Heavy Water at 283-363 K

Gy. Jakli ${ }^{\dagger}$ and W. Alexander Van Hook*
Chemistry Department, University of Tennessee, Knoxville, Tennessee 37916

New data for the logarithmic vapor-pressure ratio for water, $\ln R=\ln [P(H O H) / P(D O D)]$, are presented at 57 temperatures and critically compared to extant data. Numerical analysis results in an equation valld from 283 to 363 K with an uncertainty of $\sim 0.3 \% \ln \ln R ; \ln R=$ 44220/ $T^{2}-124.90 / T+0.0684$. Since in R itself varles between 0.2 and 0.06 in that range, and because $P(\mathrm{HOH})$ is known to better than 0.01% over the bulk of the range, It follows that $P(D O D)$ is estabilshed to $\sim 0.03 \%$, at least above 293 K, and not quite as well below 293 K . The new values that we recommend for in R lie significantly above currently accepted values.

Introduction

Continuing interest in the thermodynamic properties of isotoplc waters and their solutions, particularly solutions in $\mathrm{D}_{2} \mathrm{O}(1$, 2), makes it useful to have as accurate and precise an understanding of the vapor pressure of this material as is possible. The data available in the literature ($3-17$) are quoted in Table I. In the temperature range of interest to us, $263-373 \mathrm{~K}$, only four groups (those at Budapest, Knoxville, Los Alamos, and Western Australia) have reported data since World War II. Table II reviews previously reported correlating equations for the vapor pressure of $\mathrm{D}_{2} \mathrm{O}$ or the logarithmic ratio, in R. All but two extend from near the triple point to close to the critical temperature. The equations reflect the relatvely high precision and good agreement from laboratory to laboratory for the high-temperature data (i.e., those above $100^{\circ} \mathrm{C}(3-17)$). At lower temperatures the measurements become more difficult. Scatter in the data increases markedly, and differences between laboratories become larger.

As a part of our program of measurement of the thermodynamic properties of solutions in HOH and DOD, we have recently noted small but significant differences between pure solvent callbrating runs for in R and recommended smoothing equations (Table II), including the recent Hill-MacMillan equation (22). We have therefore made new measurements of in R. The object of the present paper is to review the available va-por-pressure data for liquid $\mathrm{D}_{2} \mathrm{O}$ below the normal boiling temperature, report data complementing those already available, and present a correlating equation for the vapor-pressure isotope effect for temperatures up to 363 K .

Between the ice and normal boiling points the vapor pressure of $\mathrm{D}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}$ changes by more than 2 orders of magnitude. The vapor-pressure ratio, $P\left(\mathrm{H}_{2} \mathrm{O}\right) / P\left(\mathrm{D}_{2} \mathrm{O}\right)$, however, only varies from 1.2 to 1.06 . For this reason, and also because it is convenient to present the molecular theory of condensed-phase isotope effects $(1,23)$ in a form which leads directly to the calculation of the logarithmic ratio, $\ln R=\ln \left[P\left(\mathrm{H}_{2} \mathrm{O}\right) / P\left(\mathrm{D}_{2} \mathrm{O}\right)\right]$, the data are reported in terms of in R. To anticipate, we find that our analysis establishes in R with a precision of $\pm 0.2 \%$ between 0 and $100^{\circ} \mathrm{C}$. Further we set unresolved systematic errors at no more than an additional $\pm 0.1 \%$. In the range $25-90^{\circ} \mathrm{C}$ the vapor pressure of water is known to better than 50 ppm (parts per million) $(24,25)$. Since in R is ~ 0.1 over that range, the resulting uncertainty in $P\left(\mathrm{D}_{2} \mathrm{O}\right)$ as calculated from ref 24 or 25 and $\operatorname{In} R$ is $\sim 0.03 \%$.

[^0]Table I. Measurements of $\ln [\mathrm{P}(\mathrm{HOH}) /(\mathrm{DOD})]$

		temp	
ref (year)	authors	range, K	methoda
$3(1933)$	Lewis and McDonald	$293-383$	M
$4(1936)$	Miles and Menzies	$293-510$	DM
$5(1936)$	Riesenfeld and Chang	$293-500$	DM
$6(1939)$	Niwa and Shimazaki	$277-286$	DM
$7(1954)$	Combs, Googin, and	$283-328$	GS
	Smith		
$8(1956)$	Oliver and Grisard	$481-643$	DM
$9(1962)$	Rivkin and Akhundov	$548-638$	M
$10(1966)$	Kiss, Jakli, and Illy	$233-283$	DM
$11(1968)$	Jones	$277-387$	DM
$12(1970)$	Liu and Lindsay	$379-573$	M
$13(1972)$	Pupezin, Jakli, Jancso,	$273-363$	$\mathrm{DC}-\mathrm{I}$
	and Van Hook		
$14(1973)$	Besley and Bottomley	$273-298$	M
$15(1978)$	Bottomley	$261-275$	$\mathrm{DC}-\mathrm{I}$
$16(1980)$	Jakli and Jancso	$280-361$	$\mathrm{DC}-\mathrm{II}$
$17(1970)$	Jakli and Van Hook	$288-353$	$\mathrm{DC-I},-\mathrm{II}$
(1980)	Jakli and Van Hook	$279-353$	DC -II, -III
	(present work)		

${ }^{a} \mathrm{M}=$ manometry, measurement of total pressure. $\quad \mathrm{DM}=$ differ ential manometry, measurement of $\Delta P . \quad G S=$ gas-saturation method. DC-j = differential capacitance manometry; calibration method j (see text).

Table II. Vapor-Pressure Equations for DOD

ref (year)	authors	temp range, K
$18(1957)$	Whalley	$293-401$
$19(1959)$	Baker	$277-644$
$20(1963)$	Elliot	$277-644$
$13(1972)$	Pupezin, Jakli, Jancso, and	$268-353$
	Van Hook	
$1(1974)$	Jancso and Van Hook	$268-353 ; 353-623$
$21(1974)$	Tanishita et al.	$277-644$
$22(1979)$	Hill and MacMillan	$273-644$
(1981)	Jakli and Van Hook	$283-363$
	(present work)	

Experimental Sectlon

Laboratory-distilled water was treated with basic potassium permanganate and then redistilled 2 times in a glass apparatus. Heavy water obtained from Merck and Co. (analytical grade) was used without further purification. H/D analysis was made from the densities by using a Mettlar-Paar densitometer (26). Differentlal pressures $P(\mathrm{HOH})-P(D O D)$ and the absolute $\mathrm{H}_{2} \mathrm{O}$ pressures, $P(\mathrm{HOH})$, were measured in the University of Tennessee differential vapor pressure apparatus previously described (13). In this apparatus in its 1980 configuration, the temperature is controlled to $\mathrm{ca} . \pm 0.0003 \mathrm{~K}$ by using a Tronac PTC-40 controller. The temperature is measured by using a platinum resistance thermometer calibrated in our laboratories (27) and a G2 Mueller bridge and coincides with IPTS to within $\pm 0.005 \mathrm{~K}$. That calibration is regularly checked. $P\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\Delta P=P\left(\mathrm{H}_{2} \mathrm{O}\right)-P\left(\mathrm{D}_{2} \mathrm{O}\right)$ are measured by differential capacttance manometry using Datametrics 521 and 531 transducers with a 1018 controller/readout unit. The precision of the measurement is determined by the capacitance manometry and is found to be $\sim 0.2 \%$ of $\triangle P / P$. We have determined that the accuracy of the measurements is limited by the procedures employed to calibrate the capacitance manometers. Measurements of $P(\mathrm{HOH})$ were consistent with the accepted values
within our precision; the smoothed literature values were used in the calculation of $\ln R$ from the observed pressure differences.

For the measurements reported in this paper, the capacitance manometer calibration was carried out in three independent ways. In method I the gages were calibrated by mercury manometry over the pressure range 1333 Pa to 101 kPa by using dry nitrogen gas as the pressure-transmilting fluid. The precision of the callbration, ca. $\pm 2 \mathrm{~Pa}$, varies from $\sim 0.2 \%$ (low-pressure end) to significantly less than 0.1% above 10 kPa . It was this callbration technique which was employed by Pupezin, Jakli, Jancso, and Van Hook (13) some years ago. Method I, however, fails to consider the effect of the dielectric constant of the vapor on the response of the differential capacitance manometers; therefore, in method II we calibrated the gages against the vapor pressure of water (i.e., in effect against our thermometer which was employed to define $P(\mathrm{HOH})$ $(24,25)$. The callbration of the ΔP gage therefore ranges from 611.7 Pa (triple point) on up to a useful maximum around 4 kPa . We note several difficulties with method II. First the iower limit of the callbration is at an inconveniently high pressure (611 Pa). Second, there is a significant difference between the recently recommended triple-point pressure, $611.7 \mathrm{~Pa} \mathrm{(28)}$, calculated from accepted equatlons defining the vapor pressure of water vs. temperature, 611.2 $\mathrm{Pa}(24,25)$. The difference amounts to an uncertainty of 0.1% at the triple point. Finally the ΔP gage is exposed to water vapor on only one side of the membrane, while in the experiment it has water vapor on both sides, albelt at slightly different pressures. We therefore made an addltional check on the calibration (method III) by measuring differences generated between water and aqueous solutions of NaCl at appropriate concentrations. The pressure differences can be calculated within the necessary precision from the well-established osmotic coefficients (29). Technique III has the advantage of exposing both sides of the gage to water vapor during calibration, just as they are in the experiments themselves.

Results

Values of $\ln R=\ln [P(\mathrm{HOH}) / P(\mathrm{DOD})]$ at 57 temperatures as obtained from measured ΔP and $P(\mathrm{HOH})$ values for three separate runs (using different samples of HOH and DOD) and corrected to the value expected for 100% DOD using Raoult's law are reported in Table III.

In the data analysis we made least-square fits of the information in Table III by using the functional form

$$
\begin{equation*}
\ln R=A / T^{2}+B / T+C \tag{1}
\end{equation*}
$$

A, B, and C are constants which can be interpreted in terms of the molecular theory of isotope effects in condensed phases (1, 23). Large-scale deviatlon plots of the present data and that previously reported (especially ref 7, 11, 13, 14, 16, 17) demonstrated that the present data joined smoothly with the Besley-Bottomley (BB) data (14) which are over the range $4-25^{\circ} \mathrm{C}$. The BB data show excellent precision (ca. $\pm 0.2 \%$) across this entire temperature range. In contrast, the data that we report, which show a precision of ca. $\pm 0.2 \%$ above $30^{\circ} \mathrm{C}$, degrade somewhat toward lower temperatures; at $10^{\circ} \mathrm{C}$ the precision is more nearly 0.5%. At any rate, because of the excellent agreement between the two data sets in the region of overiap, we have elected to report a single smoothing equation obtained by least-squares analysis of the 37 BB data points together with the 57 points from Table III. Each data point was assigned unit weight. The correlating equation, eq 2 , is valid over the range $10<t<90$.
In $R=(4.422 \pm 0.095) \times 10^{4} / T^{2}-(124.9 \pm 6.1) / T+$

$$
(0.0684 \pm 0.0098)(2
$$

Table III. Vapor-Pressure Isotope Effects; $\ln R=P(\mathrm{HOH}) / P(\mathrm{DOD})$

Floure 1. Difference plot of eq 2 and data in Table III or from Besley and Bottomley (14): (e) Besley and Bottomiey (14); (X) present data-run 1; (∇) present data-uun 2; (0) present data-run 3; (I) $\pm 0.2 \%$.

For this flt, $\left.\sum_{i=1}{ }^{94} \sigma_{1}{ }^{2}=1.9 \times 10^{-7}\right)$. A deviation plot of the present data points and those of BB is glven in Figure 1. It is clear from the figure that our estimate of precision for this fit ($\pm 0.2 \%$) is reasonable. When one uses the WexlerGreenspan (24) equation for $P(\mathrm{HOH})$, a relation for the vapor pressure of $P(D O D)$ is readily obtained

$$
\begin{align*}
& \ln P(D O D)= \\
& -A / T^{2}+(D-B) / T+(E-C)+F T+G T^{2}+H \ln T \tag{3}
\end{align*}
$$

where $A-C$ are taken from the present work ($A=4.422 \times$ $10^{4}, B=-124.9$, and $C=0.0684$) and $D-H$ are from ref 24

Floure 2. Difference plot of eq 2 and Ilterature vapor-pressure isotope effects. The numbers on the lines refer to literature citations at the end of the text. The dotted line is for the correlating equation recently presented by Hill and MacMillan (22). The error bars indicate $\pm 0.2 \%$.
($D=6898.2434, E=59.38385, F=-5.797662 \times 10^{-3}, G=$ 6.2223854×10^{-6}, and $H=-4.7406885$). Pressures calculated from eq 3 have units of pascals. The expression is limited to the same range of temperatures as eq 2.

In Figure 2 we present a difference plot between eq 2 and our fits of eq 1 to various experimental data in the literature. Because $\mathrm{P}(\mathrm{HOH})$ has been established with much higher precision than the ratio R, the deviations also measure the logarithmic differences of $P(D O D)$ which are nearly equal to the fractional deviations. The 0.2% error bars are also shown, as are the differences between the recent Hill-MacMillan (22) correlating equation and eq 2 . We have already referred to the excellent agreement between the present data and those of Besley and Bottomley (14). It is interesting to note that agreement between eq 2 and Combs, Googin, and Smith (7) is excellent (within 0.3%) between 10 and $35^{\circ} \mathrm{C}$. These authors employed a vapor-saturation method $\left(10-55^{\circ} \mathrm{C}\right)$ which is expected to become less reliable toward the high-temperature end of the experiments. Excellent agreement (0.2-0.3\%) is also displayed between the present fit and a fit to a single run (19 points) made by one of us in Knoxville in 1970 (17). This run employed differential capacitance manometry but with an entirely different set of transducers from those currently used in our apparatus. Agreement with the set of runs on the differential capacitance manometer in Budapest (16), while not quite as good, is within 0.5% over the bulk of the range from 0 to $90^{\circ} \mathrm{C}$ and is never more than 0.8% anywhere in that range. The present experiments show that the smoothing equation given by Pupezin, Jakli, Jancso, and Van Hook (13) is as much as 2% low. Smoothed equations based on the data
of Jones (11), Miles and Menzies (4), Lewis and McDonald (3), and Riesenfeld and Chang (5) are even lower.

Remarks. Since isotopic substtution generally results in significant but small changes in physical properties, it is appropriate to express isotope effects experimentally and theoretically in terms of differences or ratio equations. The equation that we present as eq 2 predicts a vapor-pressure isotope effect higher than all previous work with the exception of ref 7 and 14. However, since $\mathrm{H}_{2} \mathrm{O}$ is nearly ubiquitous in laboratory air, apparatus walls, etc., most common systematic errors will tend to lower In R from its true value. The present correlating equation shows internal consistency at $\sim 0.2 \%$ precision. We are aware of no possible source of systematic error which should increase this by more than an addlitional 0.1%. We therefore conclude that the vapor-pressure isotope effect for the system $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ is now established over the range 10-90 ${ }^{\circ} \mathrm{C}$ (283-363 K) with an accuracy of 0.3%.

Literature Clied

(1) Jancso, G.; Van Hook, W. A. Chem. Rev. 1974, 74, 689.
(2) Friedman, H. L.; Krishnan, C. V. In "The Physics and Physical Chemdstry of Water"; Franks, F., Ed.; Plenum Press: New York 1973; Vol. III, Chapter 13.
(3) Lewis, G. N.; McDonald, R. T. J. Am. Chem. Soc. 1933, 55, 3057.
(4) Miles, F. T.; Menzles, A. W. C. J. Am. Chem. Soc. 1936, 58, 1067.
(5) Rlesenfeld, E. H.; Chang, T. L. Z. Phys. Chem. Abt. B 1036, 33, 120.
(6) Niwa, K.; Shimazaki, E. J. Chem. Soc. Jpn. 1039, 60, 985.
(7) Combs, R. L.; Googin, J. L.; Smlith, H. A. J. Phys. Chem. 1954, 58, 1000.
(8) Oliver, G. D.; Grisard, J. W. J. Am. Chem. Soc. 1956, 78, 561.
(9) Rivkin, S. L.; Akhundov, T. S. Teploenergetka (Moscow) 1962, 9, 5, 62.
(10) Klss, I.; Jakll, G.; Illy, N. Acta Chim. Acad. Scl. Hung. 1966, 47, 379.
(11) Jones, W. M. J. Chem. Phys. 1968, 48, 207.
(12) Liu, C. T.; Lindsay, W. T. J. Chem. Eng. Data 1070, 15, 510.
(13) Pupezin, J.; Jakli, G.; Jansco, G.; Van Hook, W. A. J. Phys. Chem. 1872, 76, 743.
(14) Besley, L.; Bottomley, G. A. J. Chem. Thermodyn. 1973, 5, 397.
(15) Bottomley, G. A. Aust. J. Chem. 1978, 31, 1177.
(16) Jakli, G.; Jancso, G. Rep. Cent. Res. Inst. Phys., Budapest 1980, 15.
(17) Jakli, G., prevlously unreported, 1970.
(18) Whalley, E. Proc. Conf. Thermodyn. Transp. Prop. Flulds 1957, 15.
(19) Baker, G. L. AECU 4738; USAEC (1959).
(20) Elliot, J. N. AECL, Chalk River, 1963, 1673.
(21) Tanishita, I.; Watanabe, K.; Uematsu, M.; Eguchi, K. Proc. Int. Conf. Prop. Water Steam, 8th, 1974 1974, Paper Vl-4.
(22) Hill, P. G.; MacMillan, R. D. C. Ind. Eng. Chem. Fundam. 1979, 18, 412.
(23) Bigeleisen, J. J. Chem. Phys. 1981, 34, 1485.
(24) Wexier, A.; Greenspan, L. J. Res. Natl. Bur. Stand., Sect. A 1971, 75, 213.
(25) Ambrose, D.; Counsell, J. F.; Davenport, A. J. J. Chem. Thermodyn. 1970, 2, 283.
(26) Dutta-Choudhury, M. K.; Van Hook, W. A. J. Phys. Chem. 1980, 84, 2735.
(27) Jancso, G.; Pupezin, J.; Van Hook, W. A. J. Phys. Chem. 1970, 74, 2984.
(28) Guildner, L. A.; Johnson, D. P.; Jones, F. E. J. Res. Natl. Bur. Stand., Sect. A, 1078, 80, 505.
(29) Glbbard, H. F.; Scatchard, G.; Rousseau, R. A.; Creek, J. L. J. Chem. Eng. Data 1974, 19, 281.

[^1]
[^0]: ${ }^{\dagger}$ Permanent address: Chemistry Department, Central Research Institute for Physics, Budapest, Hungary.

[^1]: Received for review September 8, 1980. Accepted February 25, 1981. This research was supported by the National Science Foundation, Chemical Thermodynamics Program, and by the National Institutes of Health, Institute of General Medical Sciences.

